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We study a piecewisc linear version of a one-component, two-dimensional
bistable reaction-diffusion system subjected to partially reflecting boundary
conditions, with the aim of analyzing the structural stability of its stationary
patterns. Dirichlet and Neumann boundary conditions are included as limiting
cases. We find a critical line in the space of the parameters which divides different
dynamical behaviors. That critical line merges as the locus of the coalescence of
metastable and unstable nonuniform structures.
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1. INTRODUCTION

The subject of pattern formation in extended dissipative systems has
become a very active field of research, from both the experimental and
theoretical points of view. In particular, the description of dissipative struc-
tures in terms of reaction-diffusion (RD) equations has been a very fecund
source of tractable models in physics, chemistry, and biology.(1-9)

The boundary conditions (BCs) determine the merging and the
stability of nonequilibrium structures in RD systems.(10-15) In recent
papers, we have studied the role of the BCs for one- and two-component
systems.(14,18)
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The specific model we shall study here belongs to a family of one-
component models with a broad range of applicability, whose general for-
mulation reads (7 ,9)

Here D is the diffusion coefficient, T ( r , t ) is a real field representing the
physical magnitude of interest which in our case will be the temperature,
and the local term F ( T ) accounts for the dynamics of the system in the
absence of diffusion. For bistable RD systems F(T) is the reaction term
and takes the form of a cubic-like function. Among its three roots, two are
stable fixed points and the other one is unstable.(7,9)

We shall concentrate on a bistable reaction-diffusion system subjected
to partially reflecting boundary conditions (albedo DCs). This type of BC
links the value of the field to its normal derivative at the boundary Z
through the value of the albedo parameter k>0:

meaning that the boundary Z is partially reflective. Albedo DCs are
currently used to simulate partially reflecting boundaries for heat flux.(20,21)

These BCs can be achieved in chemical reactions by means of a controlled
flux of species at the boundaries in an unstirred reactor tank limited by gel
strips(22-25) In refs. 13, and 15-18 it was shown that under certain cir-
cumstances this type of BC can control the relative stability between the
attractors of RD systems. The usual Dirichlet and Neumann BCs (com-
plete absorption or reflection at the boundaries, respectively) correspond to
the limiting cases k -> oo and k->0.

We shall focus on a bidimensional one-component model of an elec-
trothermal instability called the Ballast resistor. This system admits a
description in terms of a bistable RD equation. (10,26-29) For the sake of
clarity we shall restrict our analysis to the superconducting version of the
resistor, described by the so-called "hot-spot" model. That device is
currently used in superconducting microbridges(30) After a suitable rescaling
of the variables, the balance equation can be written as the following
piecewise linear bistable RD equation:



where T is the scaled temperature field which determines the state of
the system, 6 is the Heaviside step function, and Tch is an activation thresh-
old representing the scaled critical temperature of the superconductor
(0 < Tch < 1). Equation (3) models a realistic bistable RD system, keeps its
qualitative characteristics, and allows us to obtain analytical results. In
particular, exact stationary solutions can be explicitly found. The formation
of a nonuniform stable structure in this model system is interpreted as a
nucleation phenomenon as follows: The unstable pattern is the nucleation
fluctuation and the uniform solution is the metastable phase.

We point out that most of the results obtained for this piecewise linear
model could be straightforwardly extended to more general cases with
smoother bistable potentials, since it has already been verified that the
piecewise linear approximation preserves the essentials of the phase
behavior.(18,31-34) In Eq. (3), the piecewise linear reaction term is a conse-
quence of the superconducting nature of the resistor. In a more general
context, discontinuous force terms with piecewise continuous derivatives
typically result from singular perturbations of two-component systems with
one vanishing diffusion constant.(35)

We shall see how the BCs and the value of the activation threshold
determine the region in the space of the parameters where the piecewise
linear RD system modeled by Eq. (3) shows a bistable regime. In par-
ticular, we want to elucidate (a) the structural stability of dissipative struc-
tures subject to Dirichlet and Neumann BCs, and (b) the effect of a finite
reflectivity on the coalescence of metastable and unstable structures for dif-
ferent activation thresholds. We shall identify the region in the (Tch,k)
space where small variations of those parameters induce a qualitative
change in the nature of the dynamics. Our analysis will be carried out by
exploiting the notion of the nonequilibrium potential of the system. That
approach offers a way of revisiting problems that have recently attracted
attention both experimentally and theoretically, namely the effect of the
BCs on the pattern selection process, the induction of transitions by fluc-
tuations, the possibility of the propagation of solitary traveling waves in
chemical reactions, etc.(36-42)

To simplify further, we consider here the symmetric case in which the
albedo parameter k takes a single value on the convex boundary, and we
use that value as a control parameter. The generalization of the present
analysis to angle-dependent BCs is currently under study.

2. PATTERN FORMATION IN THE BALLAST RESISTOR

We review in this section the axially symmetric stationary patterns
of Eq. (3) in two spatial dimensions.(16) The scaled equation for the
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temperature field reads

where r=|r| . In what follows, we consider Eq. (4) restricted to the finite
region r^RL, and subject to partially reflecting BCs at r = RL.

2.1. Stationary Patterns

We consider patterns of two regions with circular symmetry: the central
region ( r < R C ) is above the scaled threshold temperature Tch (activated),
and the surrounding annulus is below Tch (not activated). Figure 1 shows
the profiles of two typical patterns associated with the same values of Tch

and k.
Equation (4) is solved by proposing different analytical forms for

T(R) (here these are linear combinations of zeroth order modified Bessel
functions), depending on whether T> Tch or T< Tch. These expressions, as
well as their first derivatives, have to be matched at the spatial coordinate
of the boundary between the activated and the not-activated regions
(matching points), which we denote generically by RC.. In order to iden-
tify Rc, the equation T(Rc(k)) = Tch must be solved numerically. Figure 2

Fig. 1. Typical dissipative stationary structures for the "hot-spot" model. The values of the
parameters are Tch = 0.15 (dotted line), k = 8, and Rc=0.651 (curve a) and Rc = 1.838 (curve b).
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Fig. 2. R c /R L vs. the albedo parameter k. The curves are parametrized with the values
of Tch , and RL =2 has been fixed throughout. The double-valued curves cannot be resolved
numerically around the diverging slope points. The arrows indicate the sense in which Tch

increases.

shows some general features of the solutions of that implicit equation for
different values of Tch. The curves are parametrized with the values of Tch,
and RL = 2. There are three types of curves: monotonically increasing ones
(which exist for small k and high T c h) , closed branches, and open branches.
For the open branches, in the limit k -> I we recover Dirichlet BCs. The
nonequilibrium potential determines the dynamics of the system and the
nature of the branches (closed or open).

For each value of Tch there exists a threshold value of k, namely kmin,
where the upper branches R c ( k ) start at the value RL. Figure 3 shows kmin

vs. Tch. For k<kmim the structures associated with the upper branches
remain above Tch, so there is not an associated Rc for them. For k -» 0, i.e.,
Neumann BCs, the structures associated with the upper branches tend to
the uniform stable solution T=1.

2.2. Local Stability

The standard linear stability analysis(61) shows that the monotonically
increasing branches are all unstable. In the case of the open branches, the
upper (lower) ones are stable (unstable). For the closed curves we have the
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Fig. 3. Kmin, vs. Tch. For k < k m i n the nonuniform structures associated with the upper
branches in Fig. 2 remain above Tch, For k> kmin we have a two-folded solution where only
the upper branch corresponds to a stable pattern.

same situation when considering them as divided into upper and lower
branches at the points where their slopes diverge. The locus of those dividing
points determines a line of marginal stability. The stationary homogeneous
solution T = 0 is locally stable for all values of Tch and k (it is a homo-
geneous attractor).(16)

2.3. Global Stability

We shall use the nonequilibrium potential functional to discriminate
between stable and metastable states.(7,15,36) For Eq. (3), that functional is
defined as

where
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The integration in Eq. (5) runs over the whole area of the system. The sur-
face term Se adjusts the BCs: its value is 0 if the BCs imposed are Dirichlet
or Neumann, but in the case of albedo BCs, we have(15)

with dy = RLdd ( 0 < 0 < 2 n ) . By using Eq. (5), we can write Eq. (3) in a
gradient form:

and we see that U vanishes for stationary distributions and is negative for
every other case (it is a Lyapunov functional). During its temporal evolu-
tion, U decreases until it reaches one of its minima. The unstable structures
are related to extrema of U of the saddle-point type and define the
magnitude of the barriers between the different locally stable attractors.
The stable stationary solution corresponds to the absolute minimum of U.
The other linearly stable solutions correspond to metastable states.

Fluctuations in the steady state can also be described in terms of the
functional U. For variational systems, U plays the role of a nonequilibrium
potential and determines the stationary probability distribution of the fluc-
tuations. In fact, for Eq. (2) subject to an external aditive Gaussian white
noise we have

where g is the noise intensity and P { T } is the stationary distribution of
probability in the functional space. Small fluctuations around the local
minimum Tstat are Gaussian, since the expansion of U around it takes the
form

where the quadratic term dominates the expansion.
Figure 4 shows the behavior of U as a function of k for the open

branches of Fig. 2. The upper (lower) branches in Fig. 4 correspond to the
lower (upper) branches in Fig. 2. As U{0} =0, there exists a region of k
where the nonuniform structures are stable and the uniform ones (T=0)
are metastable. But this situation changes for certain values of Tch, for
which T=0 is the stable solution. That change in the relative stability
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Fig. 4. Nonequilibrium potential vs. the albedo parameter for nonuniform structures. The
curves are labeled by their Tch values.

between attractors is induced by tuning the albedo parameter.(15,16) The
upper branches in Fig. 4 are related to the unstable solutions and
correspond to the barriers between stable attractors (saddlepoints of U).

3. CONTROL PARAMETERS

In this section we analyze the structural stability of the dissipative
structures introduced above in terms of two control parameters Tch

and k. The limits of null reflectivity (Dirichlet BCs) and total reflectivity
(Neumann BCs), their environments, and the intermediate values of the
reflectivity will be considered separately.

3.1. Dirichlet BCs

Bistability with Dirichlet BCs (k = oo) is only possible for those values
of Tch which correspond to the open branches in Fig. 2. Figure 5 shows the
variation of Rc with Tch for several values of k. The curve denoted by oo
corresponds to Dirichlet BCs. There we see that the coalescence of the
metastable and the unstable structures occurs when Tch reaches the critical
value denoted by T c h ( I ) . The open branches in Fig. 2 correspond to the
case Tch< T c h ( i ) . When Tch reaches that critical value, the dissipative
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Fig. 5. R c /R l vs. Tch for Dirichlet, albedo, and Neumann BCs. The curves are parametrized
with k. Dirichlet BCs are indicated by cc, and Neumann BCs by 0. For those curves which
are double-valued, only the bigger Rc corresponds to a stable pattern. In the vicinity of the
diverging slope points we have the same problem as in Fig. 2. The arrow indicates the sense
in which the albedo parameter increases.

structures show a structural instability. At that critical point, the dynamics
of the system changes from bistable [Tch< Tch (I) ] to monostable
[T c h> T c h(oo)] and the two non-uniform structures collapse.

3.2. Small Reflectivity (k -1~0)

In the limit of small reflectivities ( k - 1 ~0) the structural stability of
the stationary patterns can be analized by focusing on the behaviour of U.
In that parameter region, the nonequilibrium potential takes the form

where £ is the perimeter of the pattern, I1(r) is the first-order modified
Bessel function, and Rc is the matching coordinate corresponding to
Dirichlet BCs. In order to obtain Eq. (11) we have considered Eqs. (4) and
(5) and the explicit form of the stationary patterns.

As we decrease the albedo parameter (starting from Dirichlet BCs) we
induce a more stable structure associated with a diminution of the

822/90/1-2-8
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nonequilibrium potential. This phenomenon can be extrapolated from Fig. 4.
We see from Eq. (11) that in this limit U scales with k-1, and the sign of
the correction to the asymptotic value of U gives rise to a stabilization
effect on the global properties of the structures.

3.3. Neumann BCs

Neumann BCs do not restrict the allowed values of Tch (as can be
appreciated in Fig. 5). In that limit of perfect reflectivity, we have two
stable uniform solutions: T = 0 and T= 1. The information obtained from
the "null-cline analysis"(7) regarding the nature of the dynamics can be
applied directly here. Non-flux boundary conditions show a robust struc-
tural stability under changes of the threshold parameter because there is no
critical point where the nature of the dynamics of the system could change.

3.4. High Reflectivity (K~0)

A small increase of k from Neumann BCs induces a less stable struc-
ture whose nonequilibrium potential increases linearly with k. The resulting
stable solutions correspond to structures that remain above Tch. In that
limit, the nonequilibrium potential associated with those stable patterns
takes the simplified form

where A is the area of the pattern. The behavior of U vs. k for these stable
structures is depicted in Fig. 6. A scaling behavior is also observed there.
In the limit of high reflectivities, we have

In this case, the sign of the correction to the asymptotic value of U (the
surface term) gives rise to a loss of stability on the dissipative structures.
This behavior is valid only for k < 1 and k <Kmin, because for k small but
k>km i n the structures have an exterior annular region which remains
below the threshold parameter Tch (patterns with two regions). In Fig. 3 we
can see that kmin -> 0 when Tch -> 1.

3.5. Finite Reflectivity

Let us consider now the case of an arbitrary intermediate value of the
reflectivity (albedo BCs). The coalescence of the metastable and the
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Fig. 6. The nonequilibritim potential for the stationary stable patterns corresponding to the
limit of small k. The curves are parametrized by their T,,, values.

unstable branches when Tch increases can be seen in Fig. 5. The curves go
from double- to single-valued correspondence (in our case the transition
occurs for k ~ 2 ) . The T(crit)

ch is related to k. For small k (single-valued
curves), the coalescence occurs with those stable structures which remain
above Tch. In that case, the critical value of the threshold corresponds to
the intersection of the single-valued curves with the line RC = RL.

Figure 7 shows the behavior of the nonequilibrium potential as a func-
tion of k corresponding to the closed branches. As a general rule U
decreases with k, so more reflective boundaries inflate the region where the
system exhibits a bistable regime. The coalescence of the stable and the
unstable structures gives rise to a cusp in U.

From Figs. 2 and 4 we conclude that there exists a critical line in the
space of the parameters (k, T c h) which separates the bistable dynamics
from the monostable one. This is the line of marginal stability determined
by the points of the closed curves in Fig. 2 [of coordinates (k, T ( c r i t )

c h ( k ) ) ]
where their slopes diverge. Figure 8 shows that critical line. For k -> x the
T(crit)ch(i) value is recovered. For Tch below (above) T(crit)

ch(k) the dynamics
of the system is bistable (monostable). The transition between those dif-
ferent regimes is mediated by the coalescence of the metastable and the
unstable structures, which preludes the crisis (extinction) of both structures.
In the neighborhood of the critical line, the system exhibits a structural
instability under small changes in the values of Tch or k.
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Fig. 8. Tch vs. k. The dotted line indicates the asymptotic value Tch(I) corresponding
to Dirichlet BCs.

Fig. 7. Nonequilibrium potential vs. the albedo parameter k corresponding to the closed
branches in Fig. 2. The curves are labeled by their Tch values. The cusps are the marginal
stability points.



4. SUMMARY

We have studied a piecewise linear reaction-diffusion model which
represents a bistable system with partially reflecting boundary conditions,
with the aim of identifying the region in the parameter space ( T c h , k ) where
the system shows a bistable regime. That region is limited by a critical line
which separates the bistable dynamics from a monostable one. At that criti-
cal line the system shows a structural instability: the metastable and the
unstable nonuniform structures coalesce and produce the collapse of the
corresponding attractors.

Tuning the boundary reflectivity is a natural way of selecting a critical
value of the threshold temperature. Moreover, in the bistable regime, the
barrier between different locally stable attractors depends on the value of
the boundary reflectivity. The possibility of tuning the height of that barrier
is important, for instance, in phenomena of stochastic resonance in bistable
systems.(43)

In the neighborhood of the Dirichlet BCs (k->cc) the structural
stability persists far beyond the critical threshold value. The effect of
decreasing k is to set a more stable solution. The nonequilibrium potential
decreases with k -1 in that limit. The structure is stable for Tch small, but
that situation changes for bigger activation thresholds. The dissipative
bistable systems with Tch -» Tch( oo) and subject to Dirichlet BCs have a
structural instability.

In the case of high reflectivities we detected a robust stability under
changes of the activation threshold or of the albedo parameter. Small
deviations from k = 0 induce a surface term in the Lyapunov functional
that tends to weaken slightly the stability of the stationary structure.

In the general case of finite reflectivity, the region in the space of the
parameters where the system exhibits a bistable dynamics could be con-
trolled through the albedo parameter.

We conclude that for our extended system, the region of bistability is
strongly affected by the reflectivity of the boundaries. The information
obtained from the nullclines can be applied only in the Neumann case
(K = 0). When the reflectivity decreases, we find a restriction in the allowed
values of the parameters for which the dynamics is bistable. Neumann BCs
produce the more robust patterns for the system we have considered.
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